
Exponential YoProtocol Review

January 15, 2025

Prepared for Exponential

Conducted by:

Richie Humphrey (devtooligan)

Kurt Willis (phaze)

About the Exponential YoProtocol Review

Exponential is an investment platform that enables DeFi yield opportunities through a vault

system. The YoProtocol provides a vault implementation that follows ERC4626 with

asynchronous redemptions and automated yield distribution.

About Offbeat Security

Offbeat Security is a boutique security company providing unique security solutions for

complex and novel crypto projects. Our mission is to elevate the blockchain security

landscape through invention and collaboration.

Scope

The src folder was reviewed at commit 16d83ac.

https://github.com/yoprotocol/core/tree/16d83ac2c602fc80e3e6a712b05aade4686228f5/src
https://github.com/yoprotocol/core/tree/16d83ac2c602fc80e3e6a712b05aade4686228f5

The following 6 files were in scope:

src/AuthUpgradable.sol

src/Escrow.sol

src/RolesAuthority.sol

src/TimelockController.sol

src/libraries/Errors.sol

src/yoVault.sol

After our review, we re-reviewed the fixes as of d142927.

Subsequent to that, the project team added some minor changes which we also reviewed

up to the commit hash 46d46e7.

Trust Assumptions

The protocol operates with the following trust assumptions and behaviors:

The vault operator has significant control and requires high trust from users:

Can fulfill/cancel redemptions at their discretion

Sets price at redemption request time rather than fulfillment

Controls underlying balance updates and fee parameters

Has authority to execute arbitrary calls with vault's assets

Redemption mechanics:

Requests are processed approximately once per day

Users cannot cancel their own redemption requests

Only operators can cancel requests in extreme circumstances (e.g. black swan

events)

Partial fulfillments should not occur

Price is fixed at request time rather than fulfillment time

Summary of Findings

The review reports 5 LOW and 1 INFO severity issues related to fee calculations, balance

tracking, and specification compliance. No critical, medium, or high severity vulnerabilities

were identified.

Identifier Title Severity Fixed

L-01
Total pending assets calculation excludes

fees leading to incorrect available balance
Low d142927

L-02
Precision loss in fee calculations can lead to

dust accumulation
Low d142927

L-03
previewWithdraw returns values without

fees
Low d142927

L-04
Authorization check does not consider

value being sent
Low Acknowledged

L-05
Aggregate balance update susceptible to

sandwich attack
Low Acknowledged

I-01
Cancelled redemption shares are returned

to receiver instead of owner
Info Acknowledged

Detailed Findings

Low Findings

[L-01] Total pending assets calculation excludes fees
leading to incorrect available balance

In the yoVault contract's requestRedeem() function, totalPendingAssets is updated with

the fee-subtracted amount rather than the total amount including fees. This causes

 _getAvailableBalance() to overestimate the available assets since fees are not reserved.

Recommendation

Update totalPendingAssets with the full amount including fees:

function requestRedeem(...) {

 uint256 assetsWithFee = super.previewRedeem(shares);

 uint256 assets = assetsWithFee - _feeOnTotal(assetsWithFee, feeOnWithdraw);

 // ...

 totalPendingAssets += assets; // Should include fee amount

}

function _getAvailableBalance() internal view returns (uint256) {

 uint256 balance = IERC20(asset()).balanceOf(address(this));

 return balance > totalPendingAssets ? balance - totalPendingAssets : 0;

}

https://github.com/yoprotocol/core/commit/d1429279c29a762ed7f235ffc0e359332ed9b9fa
https://github.com/yoprotocol/core/commit/d1429279c29a762ed7f235ffc0e359332ed9b9fa
https://github.com/yoprotocol/core/commit/d1429279c29a762ed7f235ffc0e359332ed9b9fa

This ensures that sufficient assets are reserved for both the withdrawal amount and

associated fees.

[L-02] Precision loss in fee calculations can lead to dust
accumulation

In the yoVault contract, when processing redemptions, assets and fees are calculated

twice - once during request creation and again during withdrawal. This double calculation

can lead to dust amounts accumulating due to rounding errors from precision loss.

Specifically, in requestRedeem() , the contract calculates:

Then later in _withdraw() , the fee is calculated again based on the stored assets

amount:

Recommendation

Store the assetsWithFee amount instead of the assets without fee, and modify

 _withdraw() to handle fee calculations in a single place:

function requestRedeem(...) {

 uint256 assetsWithFee = super.previewRedeem(shares);

 uint256 assets = assetsWithFee - _feeOnTotal(assetsWithFee, feeOnWithdraw);

 // ...

- totalPendingAssets += assets;

+ totalPendingAssets += assetsWithFee;

}

uint256 assetsWithFee = super.previewRedeem(shares);

uint256 assets = assetsWithFee - _feeOnTotal(assetsWithFee, feeOnWithdraw);

uint256 feeAmount = _feeOnRaw(assets, feeOnWithdraw);

struct PendingRedeem {

- uint256 assets;

+ uint256 assetsWithFee;

 uint256 shares;

}

 function requestRedeem(

 uint256 shares,

 address receiver,

 address owner

) external whenNotPaused returns (uint256) {

 // ... existing validation ...

 uint256 assetsWithFee = super.previewRedeem(shares);

- uint256 assets = assetsWithFee - _feeOnTotal(assetsWithFee, feeOnWithdraw);

 if (_getAvailableBalance() >= assetsWithFee) {

- _withdraw(owner, owner, owner, assets, shares);

- emit RedeemRequest(receiver, owner, assets, shares, true);

- return assets;

+ _withdraw(owner, owner, owner, assetsWithFee, shares);

+ emit RedeemRequest(receiver, owner, assetsWithFee, shares, true);

+ return assetsWithFee;

 }

- emit RedeemRequest(receiver, owner, assets, shares, false);

+ emit RedeemRequest(receiver, owner, assetsWithFee, shares, false);

 IERC20(address(this)).transferFrom(owner, address(this), shares);

- totalPendingAssets += assets;

+ totalPendingAssets += assetsWithFee;

 _pendingRedeem[receiver] = PendingRedeem({

- assets: _pendingRedeem[receiver].assets + assets,

+ assetsWithFee: _pendingRedeem[receiver].assetsWithFee + assetsWithFee,

 shares: _pendingRedeem[receiver].shares + shares

 });

 return REQUEST_ID;

 }

- function fulfillRedeem(address receiver, uint256 shares, uint256 assets) extern

+ function fulfillRedeem(address receiver, uint256 shares, uint256 assetsWithFee)

 PendingRedeem storage pending = _pendingRedeem[receiver];

 require(pending.shares != 0 && shares <= pending.shares, Errors.InvalidShares

- require(pending.assets != 0 && assets <= pending.assets, Errors.InvalidAssets

+ require(pending.assetsWithFee != 0 && assetsWithFee <= pending.assetsWithFee,

- pending.assets -= assets;

+ pending.assetsWithFee -= assetsWithFee;

 pending.shares -= shares;

- totalPendingAssets -= assets;

+ totalPendingAssets -= assetsWithFee;

- emit RequestFulfilled(receiver, shares, assets);

+ emit RequestFulfilled(receiver, shares, assetsWithFee);

- _withdraw(address(this), receiver, address(this), assets, shares);

+ _withdraw(address(this), receiver, address(this), assetsWithFee, shares);

 }

 function _withdraw(

 address caller,

 address receiver,

 address owner,

- uint256 assets,

+ uint256 assetsWithFee,

 uint256 shares

) internal override {

+ uint256 feeAmount = _feeOnTotal(assetsWithFee, feeOnWithdraw);

+ uint256 assets = assetsWithFee - feeAmount;

 super._withdraw(caller, receiver, owner, assets, shares);

This approach ensures consistent fee calculation and prevents dust accumulation from

rounding errors.

[L-03] previewWithdraw returns values without fees

The yoVault contract does not override the previewWithdraw() function from ERC4626,

which means it does not account for withdrawal fees when previewing withdraw

operations. This breaks the ERC4626 standard requirement that preview functions must

accurately reflect all fee deductions.

Recommendation

Consider either:

 Override previewWithdraw() to account for fees:

 Or follow EIP-7540 and revert since the vault only supports asynchronous

withdrawals:

This ensures the preview functions accurately reflect the vault's behavior and fee

structure.

[L-04] Authorization check does not consider call value
being sent

In the yoVault's manage() function, the authorization check only validates that the caller

is authorized to call a specific function on a target contract, but does not validate whether

they are allowed to send value along with the call. This means that any address with

authorization to call any specific function can also send the entire ETH balance of the

vault:

 address recipient = feeRecipient;

 if (feeAmount > 0 && recipient != address(this)) {

 IERC20(asset()).safeTransfer(recipient, feeAmount);

 }

 }

function previewWithdraw(uint256 assets) public view virtual override returns (ui

 uint256 shares = super.previewWithdraw(assets);

 return shares + _feeOnRaw(shares, feeOnWithdraw);

}

function previewWithdraw(uint256) public view virtual override returns (uint256)

 revert Errors.UseRequestRedeem();

}

Recommendation

When granting function-level authorization, be aware that authorized addresses will have

access to utilize the vault's entire ETH balance in their calls. Authorization should

therefore only be granted to highly trusted addresses. Consider documenting this behavior

clearly in the code and external documentation.

[L-05] Aggregate balance update susceptible to sandwich
attack

The yoVault contract's mechanism for updating the aggregated underlying balances

through onUnderlyingBalanceUpdate() is vulnerable to sandwich attacks. An attacker can

front-run the balance update with a large deposit and back-run with a redemption to profit

from the "jump" in asset valuation.

The yoVault implements a multichain yield aggregation system where the total market

value across all chains is updated approximately once per day through the

 onUnderlyingBalanceUpdate() function. This creates discrete jumps in asset valuation

that can be exploited through sandwich attacks:

 An attacker monitors the mempool for onUnderlyingBalanceUpdate() transactions

 When they see a transaction that will increase the aggregated balance:

Front-run with a large deposit at the pre-update price

Let the balance update complete, increasing the price per share

Back-run with an instant redemption using requestRedeem() at the new higher

price Note: The attacker would not necessarily be able to withdraw everything,

but they should at least be able to instantly redeem their initial deposit.

The attack works because:

function manage(address target, bytes calldata data, uint256 value) external requ

 bytes4 functionSig = bytes4(data);

 require(

 Authority(authority()).canCall(msg.sender, target, functionSig),

 Errors.TargetMethodNotAuthorized(target, functionSig)

);

 result = target.functionCallWithValue(data, value);

}

/// @notice Allows the vault operator to manage the vault

/// @dev Note: Authorized addresses can send the vault's entire ETH balance along

/// Authorization should only be granted to highly trusted addresses.

function manage(address target, bytes calldata data, uint256 value) external requ

There is no cooldown period between deposits and withdrawals

The price changes occur in discrete jumps rather than smoothly over time

The attacker can predict the price movement by seeing the calldata

The vault allows instant withdrawals if sufficient assets are available

Severity Explanation

The impact is medium/high due to the potential capture of the yield increases but this is

bounded by several factors:

The attacker needs significant capital for the front-running deposit

The profit is capped by the size of the yield "jump" (e.g. if yield increases total assets

by 1%, maximum theoretical profit is ~1% of the attack deposit)

The attack only works on positive yield updates

The attack competes with fees, gas costs, slippage, and other costs related to the

attack.

In addition, this risk may be mitigated from fees as well as from the use of a private

mempool like Flashbots. As such, the likelihood of such an attack is assesed at low. This

results in an overall severity of Low.

Recommendation

This well-known issue of handling jumps in accumulated rewards is not a trivial problem to

solve. Many protocols use algorithms such as Masterchef or Synthetix to distribute a fixed

reward pool among holders according to their time-weighted contributions to a pool. Other

protocols implement a cool-down period before withdrawals to prevent sandwich attacks.

Informational Finding

[I-01] Cancelled redemption shares are returned to
receiver instead of owner

In the yoVault contract, when a redemption request is cancelled via cancelRedeem() , the

shares are returned to the receiver address rather than the original owner who initiated

the redemption request. This behavior contradicts the code comment which indicates the

shares should be returned to the owner:

function cancelRedeem(address receiver, uint256 shares, uint256 assets) external

 PendingRedeem storage pending = _pendingRedeem[receiver];

 require(pending.shares != 0 && shares <= pending.shares, Errors.InvalidShares

 require(pending.assets != 0 && assets <= pending.assets, Errors.InvalidAssets

 pending.assets -= assets;

When requestRedeem() is called, it takes both an owner and receiver parameter,

where:

 owner is the original holder of the shares who initiates the redemption

 receiver is the intended recipient of the underlying assets after redemption

However, if the redemption is cancelled, the shares are sent to the receiver rather than

being returned to the original owner .

Recommendation

Consider whether returning shares to the owner is necessary behavior. Implementing

owner tracking for redemption requests would require significant architectural changes.

At minimum, update the code comments and external documentation to clearly reflect that

cancelled redemptions will return shares to the designated receiver rather than the

original owner.

Additional Recommendations

Architecture

Consider implementing a more gradual approach to updating underlying asset

balances to prevent MEV opportunities from sudden yield accrual as suggested in M-

01

Consider adding time-delayed mechanics for permissionless redemption cancellations

to reduce trust requirements

Consider implementing vault-specific authority contracts rather than sharing a single

contract across all vaults

Add sanity checks to deployment scripts to prevent first depositor attacks

Centralization Risks

The protocol currently requires significant trust in operators who have extensive control

over:

Redemption fulfillment timing and execution

 pending.shares -= shares;

 totalPendingAssets -= assets;

 emit RequestCancelled(receiver, shares, assets);

 // transfer the shares back to the owner

 IERC20(address(this)).transfer(receiver, shares);

}

Asset price determination

Protocol parameter updates

Cross-chain asset management

Consider implementing additional controls and restrictions to reduce centralization risks

over time as the protocol matures.

Code Quality

 Add Input Validation Sanity Checks

Constructor VAULT parameter add zero address check (Escrow.sol#L14)

updateFeeRecipient() add zero address check (Escrow.sol#L156)

updateMaxPercentage() add check to ensure the new amount is greater than zero

(Escrow.sol#L147)

 State Variable Shadowed
In requestRedeem(), the owner state variable is shadowed by the parameter owner .

Use _owner instead for clarity. (Escrow.sol#L91)

 Use internal helper when initializing
initialize() should use updateMaxPercentageChange() instead of directly updating the

state variable to ensure the event is emitted and limits are enforced. (Escrow.sol#L43)

 Improve Documentation
Add comprehensive documentation around trust assumptions and operator privileges.

https://github.com/yoprotocol/core/blob/16d83ac2c602fc80e3e6a712b05aade4686228f5/src/Escrow.sol#L14
https://github.com/yoprotocol/core/blob/16d83ac2c602fc80e3e6a712b05aade4686228f5/src/Escrow.sol#L156
https://github.com/yoprotocol/core/blob/16d83ac2c602fc80e3e6a712b05aade4686228f5/src/Escrow.sol#L147
https://github.com/yoprotocol/core/blob/16d83ac2c602fc80e3e6a712b05aade4686228f5/src/Escrow.sol#L91
https://github.com/yoprotocol/core/blob/16d83ac2c602fc80e3e6a712b05aade4686228f5/src/Escrow.sol#L43

